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TOWARDS LEARNING KNOT INVARIANTS USING
GRAPH NEURAL NETWORKS

William Koch

ABSTRACT

So far, very little research has been done on the applications of machine learning to
the topological field of knot theory. To the best of our knowledge, we are the first
to investigate directly leveraging the topological structure of knots for learning
tasks to predict certain properties.
We show that graph neural networks, in particular graph isomorphism networks,
provide better accuracy in predicting the symmetry of prime knots, indicating that
the structure of knots can indeed be leveraged. While the performance of models is
still not sufficient for useful applications in research in mathematics, we hope that
this study inspires further research at the intersection of knot theory and geometric
learning methods.

1 INTRODUCTION

The purpose of this study is to investigate whether graph neural networks can be a suitable approach
to predicting knot invariants by converting knots to graph representations and thus enabling the
network to indirectly learn on the topological structure of the knot. This can have several interesting
applications in knot-theory, such as addressing the open problem of checking whether two knots
are equivalent Lackenby (2017). The complexity of this problem is unknown, but if graph-based
approaches turn out to be sufficiently expressive, we could develop efficient heuristics. Not only
could this also lead to a better understanding of the topology, but it may also provide for more
efficient means to expand the table of prime knots.

Means and Outline. To answer this question, we first provide a theoretical intuition of the topol-
ogy. This serves as a basis for the construction of our graph dataset, which is based on a table of
known prime knots with pre-computed properties. We show that our graph representation uniquely
describes a knot.

In two experiments, we then experimentally verify that the graph representation is indeed related
to knot properties. First, we want to test whether the relational structure alone is actually sufficient
for this task. This is because the graph corresponding to a planar diagram may actually represent
different knots. We consider alternative features to ensure that the corresponding knot is unique,
and evaluate the model performance differences. In a second experiment, we then test different
architectures against a standard MLP to confirm the hypothesis.

Related Work. Some of the more recent research in knot theory uses neural networks to understand
the correlation between the Jones and specialized Khovanov polynomials, and the knots’ s and g-
invariant (Rasmussen invariant and slice genus) Craven et al. (2023). Similarly, it has been shown
that given several known knot properties and one-hot encoded braid representations, neural networks
can accurately predict whether a knot is quasipositive or quasinegative Hughes (2016). However,
to the best of our knowledge, no previous research has been done on directly learning on graph
representations of knots. However, in related fields, there is more research on graph neural network
applications. Especially insights from molecular chemistry can be useful, where chirality plays an
important role and research has already been conducted Adams et al. (2021).

Contributions. To the best of our knowledge, this is the first study attempting to apply graph neural
networks to knot theory. Our contributions are therefore twofold. Firstly, we construct a dataset of
graph representations of knots from the prime knot database KnotInfo Livingston & Moore (Current
Year), and secondly, we show that graph neural networks can predict graph invariants with greater
accuracy than MLPs, which proves that certain knot invariants (in this case: symmetry type) can be
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Figure 1: The three Reidemeister moves under which two knots remain equivalent.

learned from the topological structure alone, rather than from other pre-computed knot invariants as
previous literature has done.

2 THEORETICAL BACKGROUND

We briefly summarize some of the relevant theoretical background on knot theory from Lickorish
(1997). Knot theory is a branch of topology that intuitively studies how connected one-dimensional
strings can be arranged in three-dimensional space. We rephrase definition 1.1 from Lickorish
(1997) to be specific to knots, as we do not consider the more general case of links with more
than one component:

Definition. A knot is a subset of S3, or R3, that consists of a single, piecewise linear, simple closed
curve.

Two knots are said to be equivalent if there exists an orientation-preserving piecewise linear home-
omorphism that maps both knots to the same value. A knot invariant is a quantity which remains
constant under any two equivalent knots Lickorish (1997).

Reidemeister showed that any two equivalent knots can be related through a homeomorphism con-
sisting of only three moves Reidemeister (1927), the so called Reidemeister moves (see figure 1).

Any knot can be represented by a so-called planar diagram (PD). Here, each edge of the plane graph
representation of the knot is labeled by a number. The PD representation is a list of crossings of the
knot, where each crossing is identified by four numbers which correspond to the connecting edges.
The first denotes the incoming lower edge of the crossing, and the others are the remaining edges,
in a counter-clockwise order noa.

According to the Jordan Curve Theorem, in the plane graph representation (step 1 in figure 3) there
exists exactly one coloring where the unbounded face is colored white and the remaining surfaces
are colored black, i.e. the planar graph is 2-colorable. The black faces describe the Seifert surface
of the knot.

We finally distinguish between two crossings in this colored planar graph, left- and right-handed
crossings (see figure 2). Distinguishing between the two is important, as it may affect the symmetry
of the knot, or the knot all together.

Figure 2: From left to right: left-handed and right-handed crossing.
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Figure 3: Coloring a knot

3 PREPARING THE DATA: GRAPH REPRESENTATION OF KNOTS

We use the KnotInfo database Livingston & Moore (Current Year) for a table of all prime knots
up to and including 12 crossings. As a basis, we use the plane graph generated from the planar
diagram representation (step 1 and 2 in figure 3). While we will test the model performance directly
on this graph structure, this may not be expressive enough, since the plane graph does not have any
information about the different crossing types. We point out that different crossing types may result
in different knots, so we take further steps to make the representation more expressive.

In the next step, from the plane graph, we construct a second graph where each node corresponds
to a face in the planar graph of the node by computing the minimum cycle basis of the plane graph.
We then 2-color this graph, and drop all nodes on white faces (steps 3 and 4 in figure 3).

Now that we have the coloring of the faces, we return to our original basic plane graph. As each node
represents a crossing, we refer to the planar diagram representation described in section 2 (different
from the plane graph). Knowing the incoming lower edge, as well as the next edge in the counter-
clockwise order, we can check whether the two edges span a black face in the colored plane graph.
This tells us whether a node is a left-handed or a right-handed crossing. If the node is a left-handed
crossing, we assign it the feature +1, and if it is a right-handed crossing, -1.

The provided dataset class performs these conversions during preprocessing1.

Limitations. In this representation, some edges might have duplicate edges in the corresponding
knot; however, they can only be represented as one edge. In fact, the graph is unable to distinguish
between a single and a double edge2. However, intuitively, this should not be an issue in most cases -
each crossing requires two incoming and two outgoing edges, enforced by the planar diagram repre-
sentation. The handedness of the crossing should, in most cases, provide the information necessary
to infer the double edges.

Furthermore, we point out that the Reidmeister moves can introduce bottlenecks, especially the
second one. Here, two edges in a graph are equivalent to two nodes connected by a single edge, with
each two additional outgoing edges. This may limit information flow if the knot is not simplified.
However, all knots in our experiment are simple prime knots.

The resulting database consists of 2,890 graphs, with 5-12 nodes each.

1We did not find an algorithm to compute the handedness of the crossings for our use case, so we inferred
these steps from the general properties and verified it on several knots

2Note that triple edges are impossible, as it would involve the crossing of three edges at a single point,
which is prohibited by the planar diagram representation on which our graph is based.
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4 EXPERIMENTS

Setup. Using the graph representation of knots outlined in section 3, we aim to predict the symmetry
type of the knot, i.e. determine whether a given prime knot is either reversible or chiral. While our
database lists a total of six symmetry types, we only consider these two, as the others are strongly
underrepresented; each contribute less than 1.5%. 54% of knots in the filtered dataset are reversible,
whereas 46% are chiral. The resulting dataset is rather homophilious with respect to the crossing
types which act as input features, with a node homophily of 0.71. This is unsurprising, given that
most prime knots are alternating Lickorish (1997), which implies that they admit crossings that are
often entirely left- or right-handed.

We show that graph neural networks outperform neural networks in predicting the symmetry of
knots, and perform two ablation studies. Firstly, we analyze the importance of the input features, by
first setting all node features either to 1, and then to +1 for left-handed crossings and -1 for right-
handed crossings. Secondly, we investigate the importance of the number of layers for large knots,
i.e. the importance of full information propagation.

Chosen models. We evaluate four different architectures - Graph Convolution Networks (GCN)
Kipf & Welling (2017), Graph Attention Networks (GAT) Veličković et al. (2022) and Graph Iso-
morphism Networks (GIN) Xu et al. (2019). Since we have up to twelve crossings in our dataset,
the maximum distance between two nodes in a graph is six3. For the information to pass through
the entire knot, we therefore consider architectures with at least six layers. Due to the higher layer
count, we use Jumping-Knowledge Xu et al. (2018) aggregations in all models to address over-
smoothing, concatenating the representations from every layer. Each model is followed by a global
mean pooling layer and a 2-layer MLP for the graph-level classification task.

Hyperparameters. All models are trained on an Nvidia RTX3090 GPU, and each model is initially
fine-tuned over 50 runs at 75 epochs each (no improvements beyond that observed) using the Bayes
method, optimizing for the validation accuracy. During fine-tuning and all other stages, we use five
random training, validation and test splits and report the mean and standard deviation of the test
accuracy4. We use a scheduled learning rate, starting at 1e-3, patience of 5, decaying factor of 0.9
and a minimum learning rate of 1e-5. The size of the hidden layers dhidden is chosen from [16, 32,
64, 128, 256], the number of layers as one of [2, 4, 8, 12] and the normalization is one of batch or
layer normalization.

Table 1: Hyperparameter tuning results

Architecture dhidden nlayers Norm

GIN 32 12 BatchNorm
GCN 128 6 LayerNorm
GAT 64 4 LayerNorm
MLP 128 6 BatchNorm

Results. We observe that encoding the crossing type into the node features improves the perfor-
mance of the Graph Isomorphism Network by approximately 4%. Surprisingly, however, it also
leads to an improvement for the basic MLP architecture. In the latter case, we suspect that the sym-
metry distribution of alternating and non-alternating knots changes, which the MLP could pick up
on.

Encoding the crossing types into the node features, we compare the performance of additional net-
works against the MLP as a baseline. We observe that the MLP architecture achieves an accuracy
close to 54%, which is the occurrence of the most frequent symmetry type and therefore not much
better than an educated guess.

3As all considered knots are tied, the worst case occurs when the graph representation of the knot is cyclical.
4For each split, we report the test accuracies of the epochs with the best validation accuracies and aggregate

them.
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Figure 4: For input type 0, we set all node features to 1, whereas for input type 1, we provide
information about the crossing. Both MLP and GIN benefit from information on the crossing type.

On the other hand, all graph-based models outperform the MLP, the Graph Isomorphism Network
in particular. Learning the aggregation function appears to be useful for predicting the symmetry of
knots.

Table 2: Predicting the symmetry type of knots with up to 12 crossings

Architecture Test Accuracy

GIN 65.54± 1.91%
GCN 58.79± 1.85%
GAT 58.27± 1.26%
MLP 56.30± 1.74%

5 CONCLUSION

In this work, we have shown that through an appropriate graph representation of prime knots, the
topological structure can be used to improve predictions of certain properties, such as the symmetry
type of knots.

Limitations. As pointed out in section 3, the graph representation of the knots results in potential
bottlenecks during training caused by unnecessary crossings. While this is not the case for our
dataset, as the prime knots have a minimal number of crossings, this might be a limitation for
random knots.

In this study, we have only considered prime knots. It will, in particular, be relevant to investigate
whether graph-based approaches are able to express the Reidemeister moves on more general (non-
prime) knots, which describe the rules under which knots can be considered equivalent. There
may be more suitable architectures or graph-representations of knots to express these equivalence
relations. Then we can make more conclusive arguments about the ability of graph neural networks
to reflect the topological structure of knots in general.

Outlook. If further studies prove successful, graph neural networks could be used to assist with the
fundamental problem of checking whether two knots are equivalent. This is an open problem, with
unknown complexity. Similarly, this could open doors to graph-generation tasks, such as generating
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likely prime-knot candidates. These applications could assist researchers in expanding the table of
prime knots to knots with more than 19 crossings Burton (2020).
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